A Relevance Weighted Ensemble Model for Anomaly Detection in Switching Data Streams
نویسندگان
چکیده
Anomaly detection in data streams plays a vital role in online data mining applications. A major challenge for anomaly detection is the dynamically changing nature of many monitoring environments. This causes a problem for traditional anomaly detection techniques in data streams, which assume a relatively static monitoring environment. In an environment that is intermittently changing (known as switching data streams), static approaches can yield a high error rate in terms of false positives. To cope with dynamic environments, we require an approach that can learn from the history of normal behaviour in data streams, while accounting for the fact that not all time periods in the past are equally relevant. Consequently, we have proposed a relevance-weighted ensemble model for learning normal behaviour, which forms the basis of our anomaly detection scheme. The advantage of this approach is that it can improve the accuracy of detection by using relevant history, while remaining computationally efficient. Our solution provides a novel contribution through the use of ensemble techniques for anomaly detection in switching data streams. Our empirical results on real and synthetic data streams show that we can achieve substantial improvements compared to a recent anomaly detection algorithm for data streams.
منابع مشابه
A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
متن کاملADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS
In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملEvolving Insider Threat Detection Stream Mining Perspective
Evidence of malicious insider activity is often buried within large data streams, such as system logs accumulated over months or years. Ensemble-based stream mining leverages multiple classification models to achieve highly accurate anomaly detection in such streams, even when the stream is unbounded, evolving, and unlabeled. This makes the approach effective for identifying insider threats who...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014